Lasers, ‘pirate bugs’ and bacteria help protect crops.
https://www.nature.com/articles/d42473-024-00085-4
Sugiura R, Nakano R, Shibuya K, Nishisue K, Fukuda S (2023) Real-time 3D tracking of flying moths using stereo vision for laser pest control. 2023 ASABE Annual International Meeting 2300079. https://doi.org/10.13031/aim.202300079
Matsuda N, Takahashi M, Shirai Y, Hinomoto N, Daimon T (2024) Direct parental CRISPR gene editing in the predatory bug Orius strigicollis, a biocontrol agent against small arthropods. Pest Management Science n/a. https://doi.org/10.1002/ps.8275
Hamdi FA, Kataoka K, Arai Y, Takeda N, Yamamoto M, Mohammad YFO, Ghazy NA, Suzuki T (2023) An octopamine receptor involved in feeding behavior of the two?spotted spider mite, Tetranychus urticae Koch: a possible candidate for RNAi?based pest control. Entomologia Generalis 43:89–97. https://doi.org/10.1127/entomologia/2023/1808
Shibata T, Shimoda M, Kobayashi T, Arai H, Owashi Y, Uehara T (2023) High-quality genome of the zoophytophagous stink bug, Nesidiocoris tenuis, informs their food habit adaptation. G3 Genes|Genomes|Genetics jkad289. https://doi.org/10.1093/g3journal/jkad289
Seko T, Miura K (2023) Extension of patch residence time of a biocontrol agent by selective breeding contributes to its early establishment and suppression of a pest population. J Pest Sci. https://doi.org/10.1007/s10340-023-01696-4
Shirai Y, Piulachs M-D, Belles X, Daimon T (2022) DIPA-CRISPR is a simple and accessible method for insect gene editing. Cell Reports Methods 0. https://doi.org/10.1016/j.crmeth.2022.100215
Ghazy NA, Suzuki T (2022) Environmental RNAi-based reverse genetics in the predatory mite Neoseiulus californicus: Towards improved methods of biological control. Pesticide Biochemistry and Physiology 180:104993. https://doi.org/10.1016/j.pestbp.2021.104993
鈴木 丈詞 (2021) ハダニにおけるenvironmental RNAiの学理構築と防除への応用. 日本農薬学会誌 46:92–99. https://doi.org/10.1584/jpestics.W21-42
Arai H, Watada M, Kageyama D (2024) Two male-killing Wolbachia from Drosophila birauraia that are closely related but distinct in genome structure. Royal Society Open Science 11:231502. https://doi.org/10.1098/rsos.231502
Owashi Y, Arai H, Adachi-Hagimori T, Kageyama D (2024) Rickettsia induces strong cytoplasmic incompatibility in a predatory insect. Proceedings of the Royal Society B: Biological Sciences 291:20240680. https://doi.org/10.1098/rspb.2024.0680
Nagamine K, Kanno Y, Sahara K, Fujimoto T, Yoshido A, Ishikawa Y, Terao M, Kageyama D, Shintani Y (2023) Male-killing virus in a noctuid moth Spodoptera litura. Proceedings of the National Academy of Sciences 120:e2312124120. https://doi.org/10.1073/pnas.2312124120
Owashi Y, Minami T, Kikuchi T, Yoshida A, Nakano R, Kageyama D, Adachi-Hagimori T (2023) Microbiome of Zoophytophagous Biological Control Agent Nesidiocoris tenuis. Microb Ecol 86:2923–2933. https://doi.org/10.1007/s00248-023-02290-y
Kageyama D, Harumoto T, Nagamine K, Fujiwara A, Sugimoto TN, Jouraku A, Tamura M, Katoh TK, Watada M (2023) A male-killing gene encoded by a symbiotic virus of Drosophila. Nat Commun 14:1357. https://doi.org/10.1038/s41467-023-37145-0
Arai H, Inoue MN, Kageyama D (2022) Male-killing mechanisms vary between Spiroplasma species. Frontiers in Microbiology 13. https://doi.org/10.3389/fmicb.2022.1075199
Herran B, Sugimoto TN, Watanabe K, Imanishi S, Tsuchida T, Matsuo T, Ishikawa Y, Kageyama D (2022) Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia. PNAS Nexus pgac293. https://doi.org/10.1093/pnasnexus/pgac293
餌探しを「すぐにあきらめない」天敵昆虫を育成(2024年01月17日)農研機構
青色半導体レーザーを用いた害虫の撃墜(2023年01月19日)大阪大学
昆虫ゲノム編集のあたらしい形 ー成虫注射で「難敵」撃破ー(2022年05月18日)京都大学
害虫の飛行パターンをモデル化し3次元位置を予測(2021年11月29日)農研機構
青色半導体レーザーを用いた害虫の撃墜 ―レーザー光によって殺虫剤を使わずに害虫を撃ち落とす新技術―
京都大学オンライン公開講義「立ち止まって、考える」